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Abstract

3D modeling of tunnels using a nonlinear ground model is still a time-consuming task because it usually requires a large number of
incremental phases with iterative processes, to ensure accuracy while minimizing computational effort. Optimization of the finite element
mesh is of utmost importance. Despite the current tendency towards 3D modeling of tunnels, few publications are concerned with mesh
optimization considering model size, grid refinement and order of elements. This paper improves the understanding of key issues that
affect 3D modeling of tunnels. Our results shown that: (1) 2nd order elements are more efficient when material nonlinearity is present
and should be preferred; (2) the plastic zone size has a strong influence on the model dimensions and may require discretizations much
larger than those currently accepted. The paper provides recommendations for mesh refinement and model dimensions (width and
length) as a function of the plastic zone size, for accurate 3D models with reduced computational cost.
� 2017 Tongji University and Tongji University Press. Production and hosting by Elsevier B.V. on behalf of Owner. This is an open access article
under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Introduction

Tunnel design currently relies on numerical models
thanks to the increase of computer capabilities, together
with the development of sophisticated and user-friendly
finite element codes and ground models. The 3D modeling
of tunnels is becoming more attractive due to recognized
limitations of the 2D modeling (Janin et al., 2015;
Möller, 2006), and because 3D modelling is able to capture
better the response of tunnel excavations (Janin et al., 2015;
Mašı́n, 2009; Möller, 2006; Svoboda & Masin, 2011; Yeo
et al., 2009).

Despite the improvements in hardware and software,
3D modelling of tunnels is still a time-consuming task
because it involves incremental phases to simulate the
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excavation and, most often, incorporates material non-
linearity (i.e. plasticity). The step-by-step excavation
procedure consists of a sequence of phases where the
elements inside the opening (excavation rounds) are
deactivated while the elements that represent the liner
are activated.

The potentially large number of incremental phases,
complemented with material nonlinearity (i.e. several itera-
tions to converge), makes the 3D modelling of tunnels
expensive. For instance, Franzius & Potts, 2005 mentioned
calculation times of 291.3 h to run a 45,947 nodes finite
element model with 40 incremental phases and 194.9 h to
run a 38,083 nodes model with 32 incremental phases on
a Sun SF 880 server at Cambridge University. They also
suggested that the excavation round length used in the
model should be linked to the computational capabilities,
given that this parameter strongly influences the time for
processing.
and hosting by Elsevier B.V. on behalf of Owner.
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More recently, Do, Dias, Oreste, & Djeran-Maigre,
2014, performed a 3D numerical study of mechanized twin
tunnels simulating details of the excavation, such as face
pressure, shield weight and gap filled with grouting. Their
models had 1,100,000 nodes and required 340 h (approx.
2 weeks) to run using a 2.67 GHz core i7 CPU RAM
24G computer. Despite improvements of hardware, tunnel
models are increasing in complexity and, therefore, requir-
ing more computational effort to run. Such effort may
make 3D modelling unfeasible for some applications. An
optimum finite element mesh that leads to accurate results
in reasonable time is necessary to make 3D modelling fea-
sible, for both industry and research. Surprisingly, few
publications on numerical modelling of tunnels are dedi-
cated to mesh optimization.

The literature presents a wide range of model sizes
(length and width) and finite element grids (Do et al.,
2014; Eberhardt, 2001; Gomes & Celestino, 2009; Janin
et al., 2015; Möller, 2006; Nam & Bobet, 2007; Ng &
Lee, 2005; Svoboda & Masin, 2011; Yeo et al., 2009), that
seem to indicate that there is no well-stablished procedure
to define model dimensions and grid refinement. For
instance, Franzius & Potts, 2005, summarized the model
dimensions carried out by other authors. From the sum-
mary, one can observe that the model width has an average
of 17.8Rtunnel and a standard deviation of 10Rtunnel (Rtunnel

is the radius of the tunnel); and the model length has an
average of 27.2Rtunnel and a standard deviation of
15.2Rtunnel. These statistics illustrate the large scatter of
the models sizes found in the literature.

Most of the recommendations for model size consider
stresses, strains and displacements at the boundaries.
Meisnerr, 1996, cited by Möller, 2006, states that a 8Rtunnel

to 10Rtunnel model width would be enough to minimize
errors; this is in agreement with the rule of thumb that
the boundaries should be at least 10Rtunnel far from the
opening. However, such recommendation suggests that
the boundaries are only affected by the size of the tunnel
and not by other variables such as the initial stresses, plas-
tic size and/or geological features.

Möller, 2006, proposed expressions to establish the
model dimensions for shallow tunnels as a function of
the tunnel diameter and the overburden ratio (ratio
between tunnel depth and tunnel radius), by using an
advanced constitutive model for the ground (a hardening
soil model), while considering surface settlements and shear
stress mobilization at the boundaries. The criteria were that
the settlement at a lateral boundary should not exceed 1%
of the maximum settlement along the surface and that the
principal stress directions should not rotate more than 2.5�
with respect to their initial directions at the boundaries.
Such limits are uncertain and do not provide information
on the accuracy achieved by the numerical model around
the opening; also, the conclusions did not explicitly con-
sider the size of the plastic zone. Interestingly, Möller,
2006, found that the necessary mesh width was the same
for 2D and 3D models.
Vlachopoulos & Diederichs, 2014, recommended that
the boundaries should be placed at least 12 tunnel radius
(Rtunnel) from the opening and at least 3Ryield (yield radii)
from the plastic zone around the opening. However, no
relation was provided between the size of the model and
the accuracy achieved around the opening, nor the criteria
for the recommendation.

This paper seeks to improve our understanding on how
the finite element mesh and the sequential excavation mod-
elling affect the numerical results, considering material
nonlinearity; thus, providing guidelines and information
for practitioners and academicians to build more efficient
and reliable 3D models.
Grid refinement and type of element

3D models of tunnels are usually built by extruding a 2D
grid along the tunnel axis. All references consulted (except
Janin et al., 2015, which adopted a 3D mesh with tetrahe-
dron elements) used extrusion. Figure 1 illustrates the most
common type of 3D models found in the literature.

The aim of this section is to investigate the transversal
grid refinement and the order of the elements (i.e. interpo-
lation function) for 3D simulations.

Grid refinement and order of elements were evaluated
such that nonlinear behavior was accurately captured; that
is, the goal was to find whether there is an advantage of
using quadratic interpolation elements (serendipity 2nd
order elements – 20 node hexahedron elements) instead
of linear interpolation elements (1st order elements – 8-
node hexahedron elements) and how refined the grid
should be to obtain accurate results.

Numerical accuracy, defined as how close a result is
from its true value, was assessed using the results obtained
with a very refined grid. Fig. 2 shows a cross section per-
pendicular to the tunnel axis, far from the face such that
uniform results are obtained. The numerical output is con-
sistent with the analytical solution developed for plane
strain hollow plates loaded at the boundaries, for elastic
perfectly plastic Mohr-Coulomb material (Salesҫon,
1969). Such analytical solution has been used to validate
the elastic perfectly plastic Mohr-Coulomb model in
FEM codes, such as Midas NX GTS (MIDAS
Information Technology Co., 2014). More specifically,
comparisons are made with the radial displacements at
the perimeter of the opening.

Accuracy is calculated using the following equation,
which measures the error between the true (reference) solu-
tion and the value obtained from a given realization.

Accuracy ð%Þ ¼ ju� ureferencej
jureferencej

where ureference is taken from the reference mesh. Note that
the accuracy is expressed as a percentage.

A deep unsupported circular tunnel is assumed, with a
radius of 5 m (Rtunnel = 5 m), subjected to far-field



Fig. 1. Typical 3D tunnel model found in the literature, typically built by extrusion of a 2D grid.

Fig. 2. Refined mesh using 2nd order hexahedra, used as reference, and yield ground.
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geostatic pressures of 100 kPa and coefficient of earth pres-
sure at rest, Ko, equal to 1, i.e. hydrostatic loading. Note
that under these conditions, the problem has axial symme-
try. It is common practice to adopt a uniform stress field
with depth for deep tunnel analysis. This is a valid
assumption because the changes in stress with depth are
negligible for a deep tunnel (Bobet, 2003). For the models,
the lateral boundaries are placed at 250 m (50Rtunnel) from
the center of the tunnel, a distance large enough such that
errors due to the boundaries are avoided, and the axial
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boundaries are also far enough such that plane strain con-
ditions are achieved at the cross section of interest.

The ground models were either linear elastic (Ryield =
Rtunnel) or elastic perfectly plastic with a Mohr-Coulomb
failure with associated flow rule (W = / = 19.6�), that
results in Ryield = 3Rtunnel (the soil properties are presented
in Table 1). Note that a yield radius greater than three
times the tunnel radius is unlikely in practice because it
would lead to unacceptable ground movements and even
collapse of the opening. In weak ground conditions, the
support would prevent such large plastic deformations
around the opening. Therefore, Ryield = 3Rtunnel is repre-
sentative of the worst case scenario. Further, an associated
flow rule was assumed, which carries relatively high volu-
metric plastic strains (W = / = 19.6�), making the material
nonlinearity more noticeable.

Figure 2 shows the refined mesh with 2nd order ele-
ments, used as Ref. Fig. 2 also shows the yield radius
obtained using the parameters presented in Table 1 for
Ryield = 3Rtunnel = 15 m. The size of the yield radius
matches the analytical solution.

The strength parameters shown in Table 1 (cohesion and
friction angle) were determined given the yield radius
(Ryield) for 100 kPa hydrostatic pressure, using Salesҫon’s
solution. The size of the plastic zone is representative of
the level of nonlinearity of the numerical model. Therefore,
the recommendations throughout the paper may be appli-
cable to other ground conditions, far-field stresses and to
supported tunnels, based on the size of the plastic zone
developed around the tunnel.

Both structured and unstructured grids are investigated.
Structured grids have a regular pattern, and are common in
the literature (Eberhardt, 2001; Gomes & Celestino, 2009;
Nam & Bobet, 2007; Nicholas Vlachopoulos &
Diederichs, 2014). Unstructured grids have an irregular
pattern. Unstructured grids provide more flexibility to dis-
cretize the domain compared to structured grids, given that
they allow complex nodal connectivity and different ele-
ment types (i.e. rectangular and triangular elements).
Therefore, initially, unstructured grids could be preferable
because they allow a more efficient distribution of nodes
and quadrature points; that is, a more refined grid in the
region near the opening and a coarser grid far from the
opening.

First, structured grids are analyzed. A total of 6 different
grids are assessed. The grids are made by dividing the
Table 1
Soil properties for Ryield/Rtunnel ratios. Tunnel with Rtunnel = 5 m and 100
kPa far-field hydrostatic pressure.

Ryield/Rtunnel c (kPa) / (�) E (MPa) m

1 – – 100 0.3
1.5 28.1 19.6 100 0.3
2 17.5 19.6 100 0.3
2.5 12.7 19.6 100 0.3
3 10.0 19.6 100 0.3
opening perimeter and the boundaries equally, adopting a
refined grid close to the opening that gradually coarsens
towards the boundaries.

Figure 3 plots the normalized radial displacement at the
perimeter of the opening, as a function of the number of
nodes of the different grids. The radial displacements are
normalized by those of the reference model (Fig. 2) using
the same ground properties. The computational effort is
directly related to the number of nodes, which determines
the size of the system of equations to be solved, while the
efficiency of a model relates the accuracy achieved with
the number of nodes in the model; that is, the higher the
accuracy and the smaller the number of nodes, the more
efficient the mesh is. Thus, the efficiency of the finite ele-
ment mesh can be assessed by comparing the number of
nodes with the accuracy achieved.

Figure 3 shows that, for all cases analyzed, the difference
in normalized displacements from the case considered
‘‘correct” decreases as the number of nodes (i.e. as the
number of elements) increases. It is interesting to note that
irrespective of the type of element, either first order or sec-
ond order, the errors are small if the ground model is elas-
tic. This is not the case however when plasticity is
considered. Indeed, when the material yields (Ryield =
3Rtunnel and associated flow rule, W = / = 19.6�), the most
refined mesh with 1st order elements achieves a 12.8%
accuracy using 918 nodes, while the coarser mesh with
2nd order elements achieves a 4.9% accuracy using only
287 nodes. The grid with 2nd order elements considered
optimum (coarsest grid with errors smaller than 1% for
nonlinear material) is presented in Fig. 4. In this case, the
errors are 0.6% with 836 nodes.

The data in Fig. 3 show that 2nd order elements are
more efficient than 1st order elements, when material non-
linearity is present. This observation can be explained
because of the quadratic interpolation of the 2nd order ele-
ments that can capture the nonlinear material behavior
# of nodes
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hexahedral elements).



Fig. 4. Front view of the optimum structured grid with 2nd order elements.
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more accurately than the linear interpolation of 1st order
elements. This conclusion is strengthened by the fact that,
for linear material (Ryield = Rtunnel), there is no advantage
in using 2nd order elements over 1st order elements.

To assess the influence of the grid pattern, three types of
grids using 2nd order elements with approximately the
same number of nodes are compared: (1) structured grid
using hexahedron elements; (2) unstructured grid using
only pentahedron elements (grid A); and (3) unstructured
grid using hexahedron and pentahedron elements (grid
B). The grids are developed using a mesh generator with
Delaunay algorithm with a refined mesh close to the open-
ing that gradually coarsens toward the boundary.

Similar to Fig. 3, Fig. 5 compares the radial displace-
ments at the perimeter of the opening, normalized with
respect to the reference model displacements (Fig. 2), for
different types of grid and number of nodes. Results are
obtained for nonlinear material (Ryield = 3Rtunnel and asso-
ciated flow rule, see Table 1). As expected, as the number of
# of nodes
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Fig. 5. Convergence towards reference radial displacement for different
types of grid with 2nd order elements.
nodes in the discretization increases, e.g. as the number of
elements increase, the errors decrease and the solution con-
verges towards the correct solution. The three types of
grids provide similar accuracy for the same number of
nodes. Therefore, the type of the grid structure is not as
important as the type of element. Figs. 6 and 7 show the
optimum unstructured grids. Grid A, with pentahedron
elements only, has 724 nodes and achieves 0.8% accuracy,
while grid B, with hexahedron and pentahedron elements,
has 589 nodes and 1% accuracy.

Despite the advantage of using 2nd order elements (i.e.
quadratic interpolation), with respect to 1st order elements,
models are found in the literature that use 1st order ele-
ments (i.e. linear interpolation). For instance, Ng & Lee,
2005, used 1st order elements due to limitations of compu-
tational resources; however, it is arguable that a faster
mesh resulting in equally or better results is possible using
a coarser grid with 2nd order elements, based on the results
presented in this paper.
3D mesh dimensions

Mesh width

The influence of the model width on the accuracy of the
results was assessed by a set of analyses varying the model
width (Lwidth) and the degree of material nonlinearity (yield
radius ranging from 1 to 3 times the tunnel radius; see soil
properties in Table 1). Examples of the meshes investigated
are presented in Fig. 8 (only the front face is shown, for
clarity). Similar to previous examples, the tunnel radius is
5 m and the stress state is hydrostatic (i.e. K0 = 1), with
far field stress 100 kPa.

As discussed, the range of model widths found in the lit-
erature is high, from 48.2Rtunnel to 8Rtunnel (Franzius &
Potts, 2005). Also, there is no well-established procedure
to determine the model width. Further, most of the



Fig. 6. Front view of the optimum unstructured grid A with 2nd order elements.

Fig. 7. Front view of the optimum unstructured grid B with 2nd order elements.

Fig. 8. Examples of the front view of finite element meshes with 2nd order elements (20-node hexahedra) to assess the influence of model width. Note that
the grid refinement is kept constant regardless of the mesh size.
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suggestions found often do not account for important
aspects such as the size of the plastic zone and there are
no recommendations relating mesh size and accuracy.

Figure 9 plots the error of the radial displacements at
the perimeter of the opening with respect to the reference
value, which is the displacement obtained numerically with
a model extremely wide (200Rtunnel), using the grid struc-
ture shown in Fig. 8. The figure shows that the errors
quickly decrease as the width of the mesh increases. The
figure also shows that, as the size of the plastic zone around
the tunnel increases, the errors increase.

It is interesting to see that the errors are smaller than 5%
for mesh widths larger than about 15 times the tunnel
radius and become negligible for widths larger than 40–
45 tunnel radius. It is worth noting that, for a model width
equal to 10Rtunnel, which is a common reference in the lit-
erature (Möller, 2006), the error is acceptable for linear
elasticity (1.3%), but may be unacceptable for Ryield =
3Rtunnel (13%). Also, the Vlachopoulos & Diederichs,
2014, recommendation to adopt a model size of 3Ryield

beyond the plastic zone may lead to inaccurate results.
For instance, for Ryield = 3Rtunnel, the criterion requires a
model size of 12Rtunnel, which would result in an error of
8.5%, according to Fig. 9.

Figure 10 shows the required model width (Lwidth), as a
function of the yield radius, to obtain errors below 2%,
1% and 0.5%. For a given accuracy, the width of the mesh
needed increases with the size of the plastic zone. These
observations, however, apply for the case of isotropic
stress field, which results in a yield zone that has axial
symmetry. In general, the far-field stresses are anisotropic,
and so the plastic zone around the tunnel will not be
cylindrical. In this case, the recommendation is to adopt
the largest plastic zone size, measured from the center
of the opening. This is discussed in more detail in Secti
on ‘Conclusions’, where a case with anisotropic stress field
is analyzed.
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Mesh length

The model must be long enough to capture the changes
of stresses and displacements ahead and behind the excava-
tion face of the tunnel, without any undesirable effects due
to the boundaries. To do this, it is necessary to determine
the influence length of the tunnel face; that is, the distance
ahead and behind the tunnel face affected by the excava-
tion. Also, it is necessary to assess the influence of the front
and back boundaries on the results, such that the solution
is free from boundary effects. The goal is to find the mini-
mum model length that accurately captures the 3D tunnel
excavation.

As mentioned before, there is no well-established proce-
dure in the literature to estimate the model length. In fact,
most of the recommendations disregard the influence of
material nonlinearity and do not relate model length with
accuracy.
Tunnel face effects

The tunnel excavation changes the stresses in the
ground, mobilizing shear stresses (longitudinal and
transversal arching) to achieve a new stress state. This pro-
cess is gradual, starts with the initial stresses in the ground
and ends up with a steady-state response at some distance
behind the face of the tunnel.

It is informative to determine the location where the
stresses in the ground start to be affected by the tunnel
excavation and where the displacements stop changing
behind the tunnel face; in other words, to determine the
length of influence of the tunnel face, which can be done
by assessing the displacements and stresses evolution along
the tunnel.

A model with 80Rtunnel length and 50Rtunnel width using
a suitable grid with 2nd order elements is built for the anal-
yses (Fig. 11). The length of 80Rtunnel is large enough to
capture the evolution of stresses and displacements along



Fig. 11. 3D model using 2nd order elements to assess the length of influence of the tunnel face.
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the excavation and avoid boundary effects. Also, the
50Rtunnel width minimizes boundary effects (see Sec-
tion ‘Mesh width’). The grid refinement and the order of
the elements have been discussed in Section 2. In the anal-
yses, the tunnel radius is 5 m and the initial stress state is
hydrostatic (i.e. K0 = 1), with a far field stress of 100
kPa. The model has been run for different degrees of mate-
rial nonlinearity (yield radius ranging from 1 to 3 times the
tunnel radius with associated flow rule; see parameters in
Table 1).

Möller, 2006, found that the mesh length is almost inde-
pendent of the excavation round length using a hardening
elastoplastic model; therefore, the stress path history due to
a step-by-step simulation of the excavation should have a
small influence on the model length. Such finding is con-
firmed by comparing the radial displacement profile
obtained with a step by step excavation with a round length
of 0.2Rtunnel and with a single step until the center of the
model (40Rtunnel long), as will be shown and discussed later
in Fig. 12. Therefore, to assess the influence length of the
tunnel face, the excavation is simulated in a single step
40Rtunnel long until the center of the model; this is conve-
nient because of faster computation and simple analysis
of the data, given that the single step does not produce
the ‘‘saw-tooth” shaped results associated with the step
by step excavation.

Figure 12 shows the total radial displacements at the
perimeter of the opening and those radial displacements
normalized with respect to the displacements far from the
tunnel face (note also that the figure includes results from
a step-by-step excavation with a round length of 0.2Rtunnel).
The results are plotted as a function of the distance from
the tunnel face (Dface) normalized by the tunnel radius
(Rtunnel). Note that Dface/Rtunnel = 0 is the tunnel face,
Dface/Rtunnel > 0 represents a distance ahead of the tunnel
face and Dface/Rtunnel < 0 behind the tunnel face.

The displacements start to be mobilized relatively close
to the face (at around 4Rtunnel ahead of the face), with
the largest changes occurring near the face. At the face
(Dface = 0), the normalized radial displacement is 0.16 for
Ryield = 3Rtunnel and 0.29 for Ryield = Rtunnel, which is con-
sistent with the literature (Vlachopoulos & Diederichs,
2009). The radial displacement shows an abrupt increase
just behind the face and a continued increase towards a
steady displacement with distance behind the face. This
happens at around 15Rtunnel. The shape of the curves, as
one can see in the figure, strongly depends on the size of
the plastic zone around the tunnel.

Despite the influence of the step-by-step excavation on
the total displacements (note that the radial displacement
far behind the face increases by 20% with the step by step
excavation for Ryield = 3Rtunnel and associated flow rule,
compared with the single step), for the normalized displace-
ments, after a distance of around 4Rtunnel behind the face,
the normalized radial displacements for Ryield = 3Rtunnel

for the step by step and single step match, denoting that
both methods give the same results.

Figure 13 shows the tangential stresses (rhh) near the
perimeter of the opening, normalized with respect to the
initial stresses, with the distance from the face, normalized
by the tunnel radius. For a hydrostatic far-field stress (r11

= r22 = r33 = p), the normalized stress is rhh/p. Far ahead
from the excavation face, the stress field is isotropic and of
magnitude 100 kPa. As the excavation face approaches, the
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shear stresses are mobilized (longitudinal and transversal
arching) and the tangential stresses start to increase. For
a linear elastic material (Ryield = Rtunnel), the tangential
stresses monotonically increase until they reach a constant
value behind the excavation face. For an elasto-plastic
material, yielding limits the increase of the tangential stres-
ses. Once the material yields, the tangential stresses start to
decrease until they reach a constant magnitude behind the
face, at a distance of around 2Rtunnel. Note that the dis-
tance ahead of the face where the shear stresses are mobi-
lized increases with the size of the plastic zone. The
stresses shown in Fig. 13 are consistent with Cantieni &
Anagnostou, 2009, results for an unsupported tunnel. Note
that if a support is installed, an increase in the stresses
behind the tunnel face is expected after the support instal-
lation, as shown by Cantieni & Anagnostou, 2009.

The length of the model must, at least, extend from the
location where stresses or displacements start to be mobi-
lized ahead of the face to where stresses and displacements
reach a constant value behind the excavation face; that is,
the length must be inclusive of the largest influence of the
excavation face.

Figure 14 shows the distance from the tunnel face (Dface

as multiples of the tunnel radius Rtunnel) required to reach
an accuracy of 2%, 1% and 0.5%, for tangential stresses
and radial displacements, for different sizes of the plastic
zone. The plots can be used to estimate the model length,
even for models with anisotropic far-field stress, by using
the largest size of the yield zone, as it will be shown later
in the verification section. Also, the model must include
the length affected by the front and back boundaries, as
discussed in the next section.

Front and back boundaries
The aim of the section is to determine how results are

affected by the front and back boundaries of the model.
A model with 20Rtunnel length and 50Rtunnel width, with
a suitable refined grid, using 2nd order elements is built
for the analyses. Figure 15 shows the model. A step-by-
step excavation is implemented throughout the entire
model to assess the length of influence of the front and
back boundaries. As it will be shown, the 20Rtunnel model
length is enough to obtain displacements free from bound-
ary effects.

The model is run for different plastic zone sizes
(Ryield from 1.5 to 3 Rtunnel with associated flow rule,
w = / = 19.6�; see input parameters in Table 1), and with
an excavation round length of 0.2Rtunnel. Similar to previ-
ous discussions, the tunnel radius is 5 m and the stress state
hydrostatic (i.e. K0 = 1), with a far field stress of 100 kPa.

Figure 16 shows the radial displacements at the
perimeter of the tunnel normalized by the radial displace-
ments far from the influence of the face. The results are
plotted as a function of the distance from the center of
the model (Dcenter), normalized by the tunnel radius. That
is, Dcenter/Rtunnel = 0 represents the middle of the model;
Dcenter/Rtunnel = 10 represents the back boundary, and
Dcenter/Rtunnel = �10, the front boundary.
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Fig. 15. 3D model to assess the influence of the front and back
boundaries.
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As Fig. 16 shows, the front boundary has an influence
over a length of 2Rtunnel and the back boundary, over
6Rtunnel. It is interesting to note that the length of influence
of the front and back boundaries does not vary signifi-
cantly with the plastic zone size. Thus, in general, results
over a length of 2Rtunnel ahead of the front boundary
and 6Rtunnel behind the back boundary should be disre-
garded. In other words, any mesh discretization should
include an additional 2Rtunnel length beyond the front
boundary and 6Rtunnel behind the back boundary, to
achieve acceptable results.
Axial grid refinement

A 3D tunnel model is usually built by extruding a 2D
grid along the tunnel axis. Despite the strong influence that
the axial grid refinement has on accuracy and computa-
tional effort, as highlighted by Franzius & Potts, 2005,
and Möller, 2006, there is limited research on the axial grid
refinement. In this section, this issue is discussed.

The models used for this study are similar to those pre-
sented in Section 3.2.2 (same dimensions and boundary
conditions), but with an excavation round length (L) of
1Rtunnel, 0.4Rtunnel and 0.2Rtunnel. These values encompass
a wide range of excavation round lengths used in practice.
The goal is to evaluate the radial displacement profile
obtained with the different excavation round lengths, to
determine which element length ensures accurate results
regardless of the excavation round length. Note that the
excavation round length affects the stress path of the
ground around the opening; therefore, the radial displace-
ments profile varies with different excavation round
lengths, as mentioned by Vlachopoulos & Diederichs, 2009.

Each model is run using different element lengths
(Lelement) (i.e. different axial grid refinements). Also, the
models are run with Ryield = 3Rtunnel (see soil properties
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in Table 1) and associated flow rule (w = / = 19.6�).
Figure 17 shows the models using Lelement = 0.1Rtunnel

and Lelement = 1Rtunnel.
Figures 18–20 show the radial displacements at the

perimeter of the tunnel after excavation throughout the
entire model (similar to what was done in Section 3.2.2),
shown in Fig. 16, with distance from the center of the
model (Dcenter) normalized by the tunnel radius, for exca-
vation round lengths (L) of 1Rtunnel, 0.4Rtunnel and of
0.2Rtunnel. As before, Dcenter/Rtunnel = 0 represents the cen-
ter of the model; Dcenter/Rtunnel = 10 the back boundary,
and Dcenter/Rtunnel = �10, the front boundary. Those
graphs illustrate the influence of the step by step excavation
in the displacements, for Ryield = 3Rtunnel using an elastic
perfectly plastic Mohr Coulomb model with associated
flow rule. Note that the displacements increase as the exca-
vation round length decreases. For a round length of
0.2Rtunnel, the step by step excavation causes 18% increase
of the radial displacements with respect to a single step
excavation.

The displacements have the characteristic saw-tooth
shape with a periodicity equal to the excavation round.
This is a result that has been observed by others (e.g.
Möller, 2006). Note also that the amplitude of the
saw-tooth, that is the difference between the maximum
and minimum displacements, decreases as the round length
is reduced; however, the overall magnitude of the displace-
ments increases by decreasing the round length.

For the largest round length, L = 1Rtunnel, (Fig. 18), the
radial displacement profiles obtained for Lelement = Rtunnel

(1 element per round) and for Lelement = 0.5Rtunnel

(2 elements per round) are inconsistent with the
(a)

(b)

Fig. 17. Models with different axial grid refinement. (
profile obtained using the most refined axial grid
(Lelement = 0.1Rtunnel). In contrast, the difference between
the radial displacements between Lelement = 0.2Rtunnel

(5 elements per round) and Lelement = 0.1Rtunnel (10 elements
per round) is negligible.

Similarly, for L = 0.4Rtunnel (Fig. 19), the radial
displacement profiles for Lelement = 0.1Rtunnel and Lelement

= 0.2Rtunnel are comparable, but different than Lelement =
0.4Rtunnel. Similar observations can be made for
L = 0.2Rtunnel (Fig. 20). In short, discretization using
Lelement = 0.2Rtunnel leads to satisfactory results for all
round lengths assessed regardless of the number of
a) Lelement = 0.1Rtunnel and (b) Lelement = 1Rtunnel.
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elements per round length. Thus, element lengths of
0.2Rtunnel or shorter seem appropriate for the axial grid,
regardless of the excavation round length.
Verification

The previous analyses have been conducted assuming a
hydrostatic far-field stress. While the assumption has been
useful to identify the critical issues and reach simple con-
clusions, in reality, the geostatic stresses are anisotropic.
It is thus imperative to determine to what extent the obser-
vations made can be generalized. To do this, additional
analyses are made: a 3D model with large dimensions
and refined mesh (reference model) is compared with a
3D model with dimensions and mesh refinement following
the recommendations made based on the previous
simulations. An excavation round length of 5 m (i.e. one
tunnel radius), tunnel radius of 5 m, anisotropic stress field
(i.e. r1 = 100 kPa, r2 = r3 = 50 kPa) and an elastic,
perfectly plastic Mohr-Coulomb material with parameters
for Ryield = 2Rtunnel and non-associated flow rule (W = 0�)
(see Table 1) is adopted. Under such conditions, the shape
of the plastic zone around the opening is not circular and
the maximum distance from the center of the opening to
the limit of the plastic zone is approximately 2Rtunnel.

Figure 21 shows the reference 3D model, which uses 2nd
order elements and has 80Rtunnel length and 50Rtunnel

width. Such dimensions are sufficient to capture the dis-
placements and stresses in the tunnel without boundary
effects. The model uses an element length of 0.2Rtunnel

within the volume comprised between 30Rtunnel behind
the excavation face and 20Rtunnel ahead of the excavation
face. The axial grid is coarsened close to the front and back
boundaries to save processing time.

Figure 22 shows the grid built following previous recom-
mendations. That is, the model uses 2nd order elements
and mesh following Fig. 4; the model width is 25Rtunnel,
based on Fig. 10 (assuming a 1% accuracy and Ryield =
2Rtunnel); the model length is 26Rtunnel, based on Figs. 14
and 16 (assuming 1% accuracy and Ryield = 2Rtunnel;
12Rtunnel behind the face and 6Rtunnel ahead of the face);
and the element length is 0.2Rtunnel, as discussed in
Section 4.

Figure 23 shows the radial displacements obtained from
both models along the axis of the tunnel (represented by
the distance from the face normalized by the tunnel radius;
Dface/Rtunnel = 0 is the tunnel face, Dface/Rtunnel > 0 is
ahead of the tunnel face and Dface/Rtunnel < 0 is behind
the tunnel face). The displacements profiles are similar to
each other, showing that the recommendations reached
with a hydrostatic far-field stresses can be used for aniso-
tropic geostatic stresses. This observation is supported by
the results shown in Fig. 24, which is a plot of the principal
stresses obtained from both models. As one can see, the
results are similar.

It is worth mentioning that the reference 3D model has
326,906 nodes and requires 40 excavation steps, taking
13.46 h to run, while the recommended model has 51,246
nodes and 14 excavation steps, taking only 0.29 h to com-
plete. That is, the recommended model runs almost 50
times faster than the reference model and provides equiva-
lent results. Both models were run on the same computer
(32 Gb RAM and Xeon E5-1660 v4, with 3.2 GHz
processor).
Conclusions

In this paper, aspects that affect the 3D modelling of
tunnels such as model size (width and length), grid refine-
ment (transversal and longitudinal), grid type (structured
and unstructured) and order of elements (i.e. interpolation



Fig. 21. Front and side view of the reference 3D model.

Fig. 22. Front and side view of the recommended 3D model, which dimensions and grid were determined based on the recommendations provided.
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functions) are investigated, to provide recommendations
for 3D meshing of FEM simulations of deep tunnels.

Finite element grids with 2nd order elements (i.e.
quadratic interpolation) show better performance than
finite element grids using 1st order elements (i.e. linear
interpolation) when material nonlinearity is involved.
Therefore, 2nd order elements should be preferred. Also,
the structure of the grid (structured or unstructured grid)
has a secondary importance compared with the order of
the elements.

The size of the plastic zone has a major influence on the
model dimensions. Requirements for model widths have
been determined for yield radii (Ryield) varying from 1
(linear material) to 3 (worst case scenario). To achieve a
1% accuracy, for Ryield = 3Rtunnel and associated flow
rule, a model width of 32Rtunnel is required, while for
Ryield = 1Rtunnel (linear material), a width of 11Rtunnel is
needed. This is in contrast with the common reference
found in the literature of 10Rtunnel, which may be suitable
for a linear material but may not be acceptable for a
nonlinear material.

Minimum model lengths have been also determined as a
function of the yield radius. To obtain stresses and
displacements with 1% accuracy, for Ryield = 3Rtunnel

and associated flow rule, the influence length of the
excavation face is 23Rtunnel (15Rtunnel behind the face
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and 8Rtunnel ahead), while for Ryield = 1Rtunnel (linear
material), the influence length is 9Rtunnel (5Rtunnel behind
and 4Rtunnel ahead). Common references found in the
literature suggesting influence length of 4Rtunnel behind
the face and 4Rtunnel ahead the face (e.g. Eberhardt,
2001, and Shahin, Nakai, Hinokio, & Yamaguchi, 2004)
may be appropriate for linear materials, but can lead to
unacceptable errors when a nonlinear material is involved.
Further, the length affected by the front and back
boundaries should be added to the model length. It is
recommended to add 8Rtunnel to the length of influence
of the excavation, 2Rtunnel from the front boundary and
6Rtunnel from the back boundary, to avoid boundary
effects.

The paper also examines the minimum element length to
be used when step-by-step excavation is attempted. This is
necessary when an elastoplastic model is used, as the solu-
tion is stress-path dependent. Results from a number of
simulations that explore the errors associated with different
element sizes and excavation round lengths show that using
2nd order elements, with a maximum length of 0.2Rtunnel,
provides acceptable values for stresses and displacements.

While the recommendations provided have been found
with the assumption of hydrostatic far-field initial stresses,
additional cases using the suggested mesh dimensions with
far-field anisotropic stresses indicate that the recommenda-
tions are also applicable to those cases with anisotropic far-
field stresses.

The recommendations and conclusions reached with the
work presented are not intended to cover all possible cases,
as they have been obtained from a finite number of numer-
ical experiments that, while covering a widespread of pos-
sibilities, are necessarily limited (e.g. they may not be
applicable to shallow tunnels since they have not been
included in the investigation). What is suggested should
be taken as a first approximation for mesh optimization,
while future work will, no doubt, refine and add to the
recommendations.
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